侧边栏壁纸
博主头像
疯狂IT人博主等级

IT编程日记是一个记录分享程序员【疯狂IT人】编程日记的技术博客,用程序员视角总结分享IT编程和互联网知识的那些事儿。

  • 累计撰写 164 篇文章
  • 累计创建 14 个标签
  • 累计收到 0 条评论

目 录CONTENT

文章目录

计算机相关名词解释:详解ACSII,GB-2312,BIG5,UTF-8/16,Unicode区别与联系

疯狂IT人
2022-11-17 / 0 评论 / 2 点赞 / 103 阅读 / 7,129 字 / 正在检测是否收录...

utf8
计算机相关名词解释:详解ACSII,GB-2312,BIG5,UTF-8/16,Unicode区别与联系

避不开的ASCII码

我们知道,在计算机内部,所有的信息最终都表示为一个二进制的字符串。每一个二进制位(bit)有0和1两种状态,因此八个二进制位就可以组合出256种状态,这被称为一个字节(byte)。也就是说,一个字节一共可以用来表示256种不同的状态,每一个状态对应一个符号,就是256个符号,从0000000到11111111。 上个世纪60年代,美国制定了一套字符编码,对英语字符与二进制位之间的关系,做了统一规定。这被称为ASCII码,一直沿用至今。 ASCII码一共规定了128个字符的编码,比如空格"SPACE"是32(二进制00100000),大写的字母A是65(二进制01000001)。这128个符号(包括32个不能打印出来的控制符号),只占用了一个字节的后面7位,最前面的1位统一规定为0。

GB-2312

简介:

至于亚洲国家的文字,使用的符号就更多了,汉字就多达10万左右。一个字节只能表示256种符号,肯定是不够的,就必须使用多个字节表达一个符号。比如,简体中文常见的编码方式是GB2312,使用两个字节表示一个汉字,所以理论上最多可以表示256x256=65536个符号。 GB 2312 或 GB 2312–80 是中华人民共和国国家标准简体中文字符集,全称《信息交换用汉字编码字符集·基本集》,又称GB0,由中国国家标准总局发布,1981年5月1日实施。GB 2312编码通行于中国大陆;新加坡等地也采用此编码。中国大陆几乎所有的中文系统和国际化的软件都支持GB 2312。 GB 2312标准共收录6763个汉字,其中一级汉字3755个,二级汉字3008个;同时收录了包括拉丁字母、希腊字母、日文平假名及片假名字母、俄语西里尔字母在内的682个字符。 GB 2312的出现,基本满足了汉字的计算机处理需要,它所收录的汉字已经覆盖中国大陆99.75%的使用频率。但对于人名、古汉语等方面出现的罕用字和繁体字,GB 2312不能处理,因此后来GBK及GB 18030汉字字符集相继出现以解决这些问题。

分区表示:

GB 2312中对所收汉字进行了“分区”处理,每区含有94个汉字/符号。这种表示方式也称为区位码。 01–09区为特殊符号。 16–55区为一级汉字,按拼音排序。 56–87区为二级汉字,按部首/笔画排序。 举例来说,“啊”字是GB 2312之中的第一个汉字,它的区位码就是1601。 10–15区及88–94区则未有编码.

字节结构:

在使用GB 2312的程序通常采用EUC储存方法,以便兼容于ASCII。这种格式称为EUC-CN。浏览器编码表上的“GB2312”就是指这种表示法。 每个汉字及符号以两个字节来表示。第一个字节称为“高位字节”,第二个字节称为“低位字节”。 “高位字节”使用了0xA1–0xF7(把01–87区的区号加上0xA0),“低位字节”使用了0xA1–0xFE(把01–94加上0xA0)。 由于一级汉字从16区起始,汉字区的“高位字节”的范围是0xB0–0xF7,“低位字节”的范围是0xA1–0xFE,占用的码位是72*94=6768。其中有5个空位是D7FA–D7FE。 例如“啊”字在大多数程序中,会以两个字节,0xB0(第一个字节)0xA1(第二个字节)储存。(与区位码对比:0xB0=0xA0+16,0xA1=0xA0+1)。

两种不同的GB2312实现:

GBK子集与GBK/GB 18030兼容,GB2312.TXT则不兼容。后者基于ftp.unicode.org曾经提供的GB2312.TXT实现,于2011年由官方弃用,2016年9月时已无原文件踪迹。此外还有很多种厂商实现。 截至2015年,微软.NET使用的是“GBK子集”实现。ICU、libiconv-1.14、php-5.6、ActivePerl-5.20、Java 1.7、Python 3.4都使用“GB2312.TXT”实现。Ruby 2.2兼容两者编码,但内部使用“GBK子集”实现。W3C的编码技术指南规定,应将gb2312字节流视为GBK编码,与GB18030一并使用同一解码器解码。

BIG5

简介:

Big5,又称为大五码或五大码,是使用繁体中文(正体中文)社区中最常用的电脑汉字字符集标准,共收录13,060个汉字。 中文码分为内码及交换码两类,Big5属中文内码,知名的中文交换码有CCCII、CNS11643。 Big5虽普及于台湾、香港与澳门等繁体中文通行区,但长期以来并非当地的国家/地区标准或官方标准,而只是业界标准。倚天中文系统、Windows繁体中文版等主要系统的字符集都是以Big5为基准,但厂商又各自增加不同的造字与造字区,派生成多种不同版本。 2003年,Big5被收录到CNS11643中文标准交换码的附录当中,获取了较正式的地位。这个最新版本被称为Big5-2003。

来历与名称:

“大五码”(Big5)是由台湾财团法人信息产业策进会为五大中文套装软件所设计的中文共通内码,在1983年12月完成公告,隔年3月,信息产业策进会与台湾13家厂商签定“16位个人电脑套装软件合作开发(BIG-5)项目(五大中文套装软件)”,因为此中文内码是为台湾自行制作开发之“五大中文套装软件”所设计的,所以就称为Big5中文内码。五大中文套装软件虽然并没有如预期的取代国外的套装软件,但随着采用Big5码的国乔中文系统及倚天中文系统先后在台湾市场获得成功,使得Big5码深远地影响繁体中文电脑内码,直至今日。“五大码”的英文名称“Big5”后来被人按英文字序译回中文,以致现在有“五大码”和“大五码”两个中文名称。

产生原因:

Big5码的产生,是因为当时个人电脑没有共通的内码,导致厂商推出的中文应用软件无法推广,并且与IBM 5550、王安码等内码,彼此不能兼容;另一方面,台湾当时尚未推出中文编码标准。在这样的时空背景下,为了使台湾早日进入信息时代,所采行的一个项目;同时,这个项目对于以台湾为核心的亚洲繁体汉字圈也产生了久远的影响。

字节结构:

Big5码是一套双字节字符集,使用了双八码存储方法,以两个字节来安放一个字。第一个字节称为“高位字节”,第二个字节称为“低位字节”。 “高位字节”使用了0x81-0xFE,“低位字节”使用了0x40-0x7E,及0xA1-0xFE。

字节 说明
0x8140-0xA0FE 保留给用户自定义字符(造字区)
0xA140-0xA3BF 标点符号、希腊字母及特殊符号
包括在0xA259-0xA261 安放了九个计量用汉字:兙兛兞兝兡兣嗧瓩糎。
0xA3C0-0xA3FE 保留。此区没有开放作造字区用。
0xA440-0xC67E 常用汉字,先按笔划再按部首排序。
0xC6A1-0xC8FE 保留给用户自定义字符(造字区)
0xC940-0xF9D5 次常用汉字,亦是先按笔划再按部首排序。
0xF9D6-0xFEFE 保留给用户自定义字符(造字区)

冲码问题:

因为低比特字符中包含了编程语言、shell、script中,字符串或命令常会用到的特殊字符,例如0x5C“\”、0x7C“|”等。“\”在许多用途的字符串中是当作转义符号又称为转义字符,例如\n(换行)、\r(归位)、\t(tab)、\(\本身符号)、"(引号)等等。而“|”在UNIX操作系统中大多当作命令管线的使用,如"ls -la | more"等等。如果在字符串中有这些特殊的转义字符,会被程序或解释器解释为特殊用途。但是因为是中文的原因,故无法正确解释为上面所述的行为,因此程序可能会忽略此转义符号或是中断运行。若此,就违反了用户本来要当成中文字符一部分使用的本意。 一般的解决方法,是额外增加“\”的字符,因为“\”会被解释为“\”,所以“成功\因素”这个字符串就能无误地被程序当作“成功因素”的字符串来处理。但是额外的困扰是,有些输出功能并不会把“\”当作特殊字符看待,所以有些程序或网页就会错误地常常出现在“许功盖”这些字后面多了“\”。

UTF8/16:

发展历史:

1992年初,为创建良好的字节串编码系统以供多字节字符集使用,开始了一个正式的研究。ISO/IEC 10646的初稿中有一个非必须的附录,名为UTF。当中包含了一个供32比特的字符使用的字节串编码系统。这个编码方式的性能并不令人满意,但它提出了将0-127的范围保留给ASCII以兼容旧系统的概念。

1992年7月,X/Open委员会XoJIG开始寻求一个较佳的编码系统。Unix系统实验室(USL)的Dave Prosser为此提出了一个编码系统的建议。它具备可更快速实现的特性,并引入一项新的改进。其中,7比特的ASCII符号只代表原来的意思,所有多字节序列则会包含第8比特的符号,也就是所谓的最高有效比特。

1992年8月,这个建议由IBMX/Open的代表流传到一些感兴趣的团体。与此同时,贝尔实验室九号项目操作系统工作小组的肯·汤普逊对这编码系统作出重大的修改,让编码可以自我同步,使得不必从字符串的开首读取,也能找出字符间的分界。1992年9月2日,肯·汤普逊和罗勃·派克一起在美国新泽西州一架餐车的餐桌垫上描绘出此设计的要点。接下来的日子,Pike及汤普逊将它实现,并将这编码系统完全应用在九号项目当中,及后他将有关成果回馈X/Open。

1993年1月25-29日的在圣地牙哥举行的USENIX会议首次正式介绍UTF-8。 自1996年起,微软的CAB(MS Cabinet)规格在UTF-8标准正式落实前就明确容许在任何地方使用UTF-8编码系统。但有关的编码器实际上从来没有实现这方面的规格。

解释:

UTF-8

UTF-8(8-bit Unicode Transformation Format)是一种针对Unicode的可变长度字符编码,也是一种前缀码。它可以用来表示Unicode标准中的任何字符,且其编码中的第一个字节仍与ASCII兼容,这使得原来处理ASCII字符的软件无须或只须做少部分修改,即可继续使用。因此,它逐渐成为电子邮件、网页及其他存储或发送文字的应用中,优先采用的编码。

UTF-16

UTF-16是Unicode字符编码五层次模型的第三层:字符编码表(Character Encoding Form,也称为"storage format")的一种实现方式。即把Unicode字符集的抽象码位映射为16位长的整数(即码元)的序列,用于数据存储或传递。Unicode字符的码位,需要1个或者2个16位长的码元来表示,因此这是一个变长表示。 Unicode的编码空间从U+0000到U+10FFFF,共有1,112,064个码位(code point)可用来映射字符.

Unicode

Unicode的编码空间可以划分为17个平面(plane),每个平面包含216(65,536)个码位。17个平面的码位可表示为从U+xx0000到U+xxFFFF,其中xx表示十六进制值从0016到1016,共计17个平面。第一个平面称为基本多语言平面(Basic Multilingual Plane, BMP),或称第零平面(Plane 0)。其他平面称为辅助平面(Supplementary Planes)。基本多语言平面内,从U+D800到U+DFFF之间的码位区块是永久保留不映射到Unicode字符。UTF-16就利用保留下来的0xD800-0xDFFF区段的码位来对辅助平面的字符的码位进行编码。

字节结构:

UTF-8使用一至六个字节为每个字符编码(尽管如此,2003年11月UTF-8被RFC 3629重新规范,只能使用原来Unicode定义的区域,U+0000到U+10FFFF,也就是说最多四个字节): 128个US-ASCII字符只需一个字节编码(Unicode范围由U+0000至U+007F)。 带有附加符号的拉丁文、希腊文、西里尔字母、亚美尼亚语、希伯来文、阿拉伯文、叙利亚文及它拿字母则需要两个字节编码(Unicode范围由U+0080至U+07FF)。 其他基本多文种平面(BMP)中的字符(这包含了大部分常用字,如大部分的汉字)使用三个字节编码(Unicode范围由U+0800至U+FFFF)。 其他极少使用的Unicode 辅助平面的字符使用四至六字节编码(Unicode范围由U+10000至U+1FFFFF使用四字节,Unicode范围由U+200000至U+3FFFFFF使用五字节,Unicode范围由U+4000000至U+7FFFFFFF使用六字节)。

对上述提及的第四种字符而言,UTF-8使用四至六个字节来编码似乎太耗费资源了。但UTF-8对所有常用的字符都可以用三个字节表示,而且它的另一种选择,UTF-16编码,对前述的第四种字符同样需要四个字节来编码,所以要决定UTF-8或UTF-16哪种编码比较有效率,还要视所使用的字符的分布范围而定。不过,如果使用一些传统的压缩系统,比如DEFLATE,则这些不同编码系统间的的差异就变得微不足道了。若顾及传统压缩算法在压缩较短文字上的效果不大,可以考虑使用Unicode标准压缩格式(SCSU)。

UTF-8普及的原因:

互联网工程工作小组(IETF)要求所有互联网协议都必须支持UTF-8编码。互联网邮件联盟(IMC)建议所有电子邮件软件都支持UTF-8编码 互联网的普及,强烈要求出现一种统一的编码方式。UTF-8就是在互联网上使用最广的一种Unicode的实现方式。其他实现方式还包括UTF-16(字符用两个字节或四个字节表示)和UTF-32(字符用四个字节表示),不过在互联网上基本不用。重复一遍,这里的关系是,UTF-8是Unicode的实现方式之一。 UTF-8最大的一个特点,就是它是一种变长的编码方式。它可以使用1~4个字节表示一个符号,根据不同的符号而变化字节长度。 UTF-8的编码规则很简单,只有二条: 1)对于单字节的符号,字节的第一位设为0,后面7位为这个符号的unicode码。因此对于英语字母,UTF-8编码和ASCII码是相同的。 2)对于n字节的符号(n>1),第一个字节的前n位都设为1,第n+1位设为0,后面字节的前两位一律设为10。剩下的没有提及的二进制位,全部为这个符号的unicode码。 下表总结了编码规则,字母x表示可用编码的位。

Unicode符号范围 UTF-8编码方式
16进制 2进制
0000 0000-0000 007F 0xxxxxxx
0000 0080-0000 07FF 110xxxxx 10xxxxxx
0000 0800-0000 FFFF 1110xxxx 10xxxxxx 10xxxxxx
0001 0000-0010 FFFF 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx

跟据上表,解读UTF-8编码就会非常简单。如果一个字节的第一位是0,则这个字节单独就是一个字符;如果第一位是1,则连续有多少个1,就表示当前字符占用多少个字节。 下面,还是以汉字"严"为例,演示如何实现UTF-8编码。 已知"严"的unicode是4E25(100111000100101),根据上表,可以发现4E25处在第三行的范围内(0000 0800-0000 FFFF),因此"严"的UTF-8编码需要三个字节,即格式是"1110xxxx 10xxxxxx 10xxxxxx"。然后,从"严"的最后一个二进制位开始,依次从后向前填入格式中的x,多出的位补0。这样就得到了,“严"的UTF-8编码是"11100100 10111000 10100101”,转换成十六进制就是E4B8A5。

UTF-8编码的优点:

总体来说,在Unicode字符串中不可能由码点数量决定显示它所需要的长度,或者显示字符串之后在文本缓冲区中光标应该放置的位置;组合字符、变宽字体、不可打印字符和从右至左的文字都是其归因。 所以尽管在UTF-8字符串中字符数量与码点数量的关系比UTF-32更为复杂,在实际中很少会遇到有不同的情形。 更详细的说,UTF-8编码具有以下几点优点: ASCII是UTF-8的一个子集。因为一个纯ASCII字符串也是一个合法的UTF-8字符串,所以现存的ASCII文本不需要转换。为传统的扩展ASCII字符集设计的软件通常可以不经修改或很少修改就能与UTF-8一起使用。 使用标准的面向字节的排序例程对UTF-8排序将产生与基于Unicode代码点排序相同的结果。(尽管这只有有限的有用性,因为在任何特定语言或文化下都不太可能有仍可接受的文字排列顺序。)
UTF-8和UTF-16都是可扩展标记语言文档的标准编码。所有其它编码都必须通过显式或文本声明来指定。 任何面向字节的字符串搜索算法都可以用于UTF-8的数据(只要输入仅由完整的UTF-8字符组成)。但是,对于包含字符记数的正则表达式或其它结构必须小心。 UTF-8字符串可以由一个简单的算法可靠地识别出来。就是,一个字符串在任何其它编码中表现为合法的UTF-8的可能性很低,并随字符串长度增长而减小。举例说,字符值C0,C1,F5至FF从来没有出现。为了更好的可靠性,可以使用正则表达式来统计非法过长和替代值(可以查看W3 FAQ: Multilingual Forms上的验证UTF-8字符串的正则表达式)。

与UCS-2的比较:

ASCII转换成UCS-2,在编码前插入一个0x0。用这些编码,会含括一些控制符,比如"或 ‘/’,这在UNIX和一些C函数中,将会产生严重错误。因此可以肯定,UCS-2不适合作为Unicode的外部编码,也因此诞生了UTF-8。

UTF-8编码的特点:

  1. 3个字节的UTF-8十六进制编码一定是以E开头的
  2. 2个字节的UTF-8十六进制编码一定是以C或D开头的
  3. 1个字节的UTF-8十六进制编码一定是以比8小的数字开头的

Unicode

发展历史:

正如上一节所说,世界上存在着多种编码方式,同一个二进制数字可以被解释成不同的符号。因此,要想打开一个文本文件,就必须知道它的编码方式,否则用错误的编码方式解读,就会出现乱码。为什么电子邮件常常出现乱码?就是因为发信人和收信人使用的编码方式不一样。 可以想象,如果有一种编码,将世界上所有的符号都纳入其中。每一个符号都给予一个独一无二的编码,那么乱码问题就会消失。这就是Unicode,就像它的名字都表示的,这是一种所有符号的编码。 Unicode当然是一个很大的集合,现在的规模可以容纳100多万个符号。每个符号的编码都不一样,比如,U+0639表示阿拉伯字母Ain,U+0041表示英语的大写字母A,U+4E25表示汉字"严"。具体的符号对应表,可以查询 unicode.org,或者专门的汉字对应表。

Unicode的问题:

需要注意的是,Unicode只是一个符号集,它只规定了符号的二进制代码,却没有规定这个二进制代码应该如何存储。 比如,汉字"严"的unicode是十六进制数4E25,转换成二进制数足足有15位(100111000100101),也就是说这个符号的表示至少需要2个字节。表示其他更大的符号,可能需要3个字节或者4个字节,甚至更多。 这里就有两个严重的问题,第一个问题是,如何才能区别Unicode和ASCII?计算机怎么知道三个字节表示一个符号,而不是分别表示三个符号呢?第二个问题是,我们已经知道,英文字母只用一个字节表示就够了,如果Unicode统一规定,每个符号用三个或四个字节表示,那么每个英文字母前都必然有二到三个字节是0,这对于存储来说是极大的浪费,文本文件的大小会因此大出二三倍,这是无法接受的。 它们造成的结果是:1)出现了Unicode的多种存储方式,也就是说有许多种不同的二进制格式,可以用来表示Unicode。2)Unicode在很长一段时间内无法推广,直到互联网的出现。

Unicode与UTF-8之间的转换

通过上一节的例子,可以看到"严"的Unicode码是4E25,UTF-8编码是E4B8A5,两者是不一样的。它们之间的转换可以通过程序实现。 在Windows平台下,有一个最简单的转化方法,就是使用内置的记事本小程序Notepad.exe。打开文件后,点击"文件"菜单中的"另存为"命令,会跳出一个对话框,在最底部有一个"编码"的下拉条。

里面有四个选项:ANSI,Unicode,Unicode big endian 和 UTF-8。
1)ANSI是默认的编码方式。对于英文文件是ASCII编码,对于简体中文文件是GB2312编码(只针对Windows简体中文版,如果是繁体中文版会采用Big5码)。
2)Unicode编码指的是UCS-2编码方式,即直接用两个字节存入字符的Unicode码。这个选项用的little endian格式。
3)Unicode big endian编码与上一个选项相对应。我在下一节会解释little endian和big endian的涵义。
4)UTF-8编码,也就是上一节谈到的编码方法。 选择完"编码方式"后,点击"保存"按钮,文件的编码方式就立刻转换好了。

Little endian和Big endian

上一节已经提到,Unicode码可以采用UCS-2格式直接存储。以汉字"严"为例,Unicode码是4E25,需要用两个字节存储,一个字节是4E,另一个字节是25。存储的时候,4E在前,25在后,就是Big endian方式;25在前,4E在后,就是Little endian方式。 这两个古怪的名称来自英国作家斯威夫特的《格列佛游记》。在该书中,小人国里爆发了内战,战争起因是人们争论,吃鸡蛋时究竟是从大头(Big-Endian)敲开还是从小头(Little-Endian)敲开。为了这件事情,前后爆发了六次战争,一个皇帝送了命,另一个皇帝丢了王位。 因此,第一个字节在前,就是"大头方式"(Big endian),第二个字节在前就是"小头方式"(Little endian)。 那么很自然的,就会出现一个问题:计算机怎么知道某一个文件到底采用哪一种方式编码? Unicode规范中定义,每一个文件的最前面分别加入一个表示编码顺序的字符,这个字符的名字叫做"零宽度非换行空格"(ZERO WIDTH NO-BREAK SPACE),用FEFF表示。这正好是两个字节,而且FF比FE大1。 如果一个文本文件的头两个字节是FE FF,就表示该文件采用大头方式;如果头两个字节是FF FE,就表示该文件采用小头方式。

引用:

Unicode
UTF
BIG5
GB-2312

2

评论区